USING MACHINE LEARNING
TECHNIQUES FOR DATA QUALITY
MONITORING AT CMS EXPERIMENT

GUILLERMO A. FIDALGO RODRIGUEZ
PHYSICS DEPARTMENT
UNIVERSITY OF PUERTO RICO MAYAGUEZ

New Perspectives 2018 18-19 June 2018 Fermilab

THE COMPACT MUON SOLENOID (CMS) DETECTOR AT LHC
CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS

Overall diameter : 15.0 m Pixel (100x150 pm) ~16m* ~66M channels
Overall length :28.7m Microstrips (80x180 um) ~200m? ~9.6M channels
Magneticfield :3.8T

SUPERCONDUCTING SOLENOID
Niobjum titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m? ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC

CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

OBJECTIVES

* Apply recent progress in Machine Learning techniques regarding automation
of DQM scrutiny for HCAL

* To focus on the Online DQM.
* To compare the performance of different ML algorithms.

* To compare fully supervised vs semi-supervised approach.

* Impact the current workflow, make it more efficient and can guarantee that the

data is useful for physics analysis.

CHALLENGE

* Make sure detector behaves well to perform sensible data analysis.

* Reduce man power to discriminate good and bad datq, spot problems,

save time examining hundreds of histograms.
* By building intelligence to analyze datq, raise alarms, quick feedback.

* Implementing the best architecture for neural networks

* Underfitting - Too simple and not able to learn

* Qverfitting - Too complex and learns very specific and/or unnecessary features

* There is no rule of thumb

* Many, many, many...... possible combinations.

WHAT IS DATA QUALITY MONITORING (DQM)?

* Two kinds of workflows: | —
* Online DQM ‘”:Jul‘j“ -
Y |
* Provides feedback of live data taking. /[............... 20":_“?“5 - [[pfun - Analysis
onditions - |Regis A
: : Tier-0 ' [
* Alarms if something goes wrong. Torts . B CAF —
: AN 74 | F‘ iz__y‘.
BICASE e = =. . s N
P Ofﬂlne DQM Validation = - .
Simulation
) VaHda;on
* After data taking

* Responsible for bookkeeping and certifying the final data with fine tfime granularity.

HYPOTHESIS AND PROJECT QUERIES

Queries

* Can we make an algorithm that identifies anomalies in the data flow?

Hypothesis

* We can develop a ML algorithm that takes the images as data and
determine whether or not an error is occurring.

Rationale

* Since this algorithm takes images as inputs it can learn to compare the
images given with a baseline and correctly identify patterns and
deviations from the baseline.

TOOLS AND DATA PROCESSING . l.

* Working env: python Jupyter notebook

* Keras (with Tensorflow as backend) and Scikit-learn

* Creation of a model

* Train and test its performance

* The input data consists of occupancy maps

* one map for each luminosity section

* Used 2017 good data and generate bad data artificially

IMAGE ANALYSIS TERMINOLOGY

* Hoft - image with noisy (red) channels

* Dead - image with inactive (blue) channels

* Good - regular images that are certified for analysis
* Model - an ML algorithm's structure

* Loss - number that represents distance from target value

IMAGES AND READOUT CHANNELS USED AS INPUTS FOR THE ML ALGORITHM

10

70

* Supervised and Semi-Supervised Learning
* 5x5 problematic region with random location

* 5x5 (readout channels) problematic region with fixed location

-r' h‘ ae N lﬁ—‘
“ --.‘l J ¢ u- I
F'- « n.r "ty
1" '.'33.;1‘.: '7‘ % N l

20 1

- m";‘ ¥ -. 'N
r:' iy "-'l""' 5
45 L F = '

1200

1000

= !"_ w ko .

L e - 800
iy .

-4 r- l I-L. » -

". -?I r::l - i: ..';

----'.._‘..l! l‘.n .'l bwo
B g L)

4= - i - 4'eh; T - 400
B = *. i !‘ il .
il 200

0

70 1

n = ™ =
: '-_F"'_r‘.'_'.""fl
Tm v Tl
- v;u. ?' :J
S '-Il.'!“‘c;?r-:

l" i -Il l"'k: |

" © ﬂ. v
P S X
-'T‘.--! - L
sl 3 '].
- o
Frr . -

-

s
i

1200

1000

800

600

400

200

0

Hot

100000

|

80000

- 60000

- 40000

20000

SUPERVISED LEARNING

Loss

Acc

35 4

3.0

25

20

15 1

10 1

0.5 1

0.0 4

0.9

0.8 4

0.7 -

0.6 4

05 A

0.4 4

model loss
—— Train
Validation
|
0 100 150 200
Epoch
model acc

= Train
Validation

100 150 200
Epoch

True Positive Rate

104

0.8 1

0.6 1

0.4 1

0.2 1

0.0 4

accuracy score: 0.950792326939

Confusion Matrix

400
350
good
300
250

bad 200

True label

- 150

- 100
dead

Predicted label
ROC curve

~®- ROC curve of class 0 (area = 0.961)
®- ROC curve of class 1 (area = 1.000)
~®- ROC curve of class 2 (area = 0.961)

L] T

0.0 0.2 04 0.6 0.8 10

False Positive Rate

10

HOT GOOD

DEAD

SEMI SUPERVISED LEARNING

Distance

Reconstruction

0 -

.

10 ANl

20 - T ll
Ul 4

30 { N

70 47

20

30

0

70 15 o

Reconstruction
‘N S E

10 - 1.

20 1 I. 0 :] ! '

20

Reconstruction

o |

10 %

204

301 ¢

70 {5

0

10 A

2017

70 {i

30-u

0.6

05

0.4

03

0.2

01

* Trained only on good images

* Expected 1o see better reconstruction
for good images and a much different
reconstruction for bad images.

* Bad images have 5x5 bad regions

* Hot

 Dead

* Images have been normalized

* this architecture seems to perform best
for us.

11

ERROR DISTRIBUTION PER IMAGE CLASS

% 8Pl oo e e P Lo .m
o\..l.lhwosnu ‘. . M.o.\.r.\ o . omo.
e do"“o.oﬁow o & foW. nr”] . ooooOQ
[® o0 @ ° “ [} 60 o* ol S e .O . . R
. . » L] FO
| *Re o e S %" 2o o”k Ll - . g
.mw.w. AP TX X & - oo -
: U
S . o.on.ono”. .J o.mmo dw .ov.o ¢ o ® * o8 B ®
g L o - ° %. .. .%.. ° o ®] Y
@© ° o T o oA o X
oY@ o &° o % ° L] 0&
m C \o\ooo ’f oo. oh0000 “louooo ol e o
[o @ ° = '.) .
m ey .’V’.“”.*O“ = ‘.‘. .’.J“O.O “" e % vm
dM ..’ ﬁ... ‘...~.ﬂ.\. *% .‘“’
. .
Bl ¢ fRNrer il 0 T e 2y
(2} b/ ...‘... o N ‘ .' ”. ..‘ . k s L] m mvu b
m o #'h § .cS 2 o\ooo oﬂoo il oe®, m
° @
% : ‘e o2 ¢ b4 o*olo ..o -’ o o ”ooo - @
.. ..‘ L)“ LI Y ol p =
el B Ay R DA 3 ’ .nw 3
| S L g o (%Y o s e
(O] ° 8 e e 9 % . - . A
o o3® ooo o% ©) o; - -
o o oo 3%, %0 o 0”8 o = e*’n 3
m oo"oo o “Wot o o’e Moo' ° o\.ooooouooo “ .v-o o .w
T oosoo’o.o % oVo.o L ‘%Qﬁ ®oe @ ooo =]
L * o L fo ‘.o L] .o ob.. °® ° :
pa ooo“u.o I - .ﬂoo omes’ * % ®e [
ik .
nMd o@ & OOQM S ol“.Vﬁo.o : . oo .
o0 “0 e ® o G oooo e - ool S
ooo Joo oo.h “ooo 00 o“ ooﬂ".ﬂo\oo o ° il
0'\0 ooo o.oo% . .0.00 ° ‘oo
’ko* U o 20 °® ° B
- “ o o o' 00 o o3, .
= —_—
: P
=
LY
= o
c
0
B ®
=
: =]
: L
o
o =
> 0 @
a o
=
f w
o 3 -
S 8
E :
2 @
U wn
8 3
()]

Kouanbai "_m

04

12

WHAT'S NEXT?
1 @

v

Original o ~, Learned
mushroom : representation

* Can we make it work with Encode st

*Why and exactly what is it

learning?

something more realistic?
* 1x1 bad region (channel)

* Can it identify what values should be
expected after each lumi-section?

* Move from artificial bad data to real

cases of bad data (in progress)

13

Acknowledgments

The US State Depit.

The University of Michigan

CERN/CMS

Federico De Guio, Ph.D (Texas Tech)

Nural Akchurin, Ph.D (Texas Tech)

Sudhir Malik , Ph.D (University of Puerto Rico Mayaguez)
Steven Goldfarb, Ph.D (University of Melbourne)

Jean Krisch, Ph.D (University of Michigan)

Thank You!

14

BACKUP

HOW TO AUTOMATE THE DATA QUALITY CHECKS?
USE MACHINE LEARNING!

*|t's everywhere now!

/" RARELY
BREAKS
| DowN

* Al Learning

* Self-driving cars
* How do Google/Facebook know what you want?

* Face/Handwriting Recognition

GOES oN
STRIKE

*In our case everything is reduced to a
classification problem

* Anomaly Detection

16

Machine Learning libraries

SCIKIT-LEARN KERAS
* Pre-defined models * Make your own models
* Logistic Regression * A bit sophisticated
* MLP * Only for making NN

* Not much control over the model’s * Neural Networks

architecture * Deep Convolutional

, * Best with image recognition
*Very useful for testing performance

17

Input

INPUT

Neural Network

iIncluding connections

(called weights)
between neurons

Adjust
weights

How to train a model

Target

Compare

HIDDEN

calculated: 0.69

30

Gradient Descent

The “Learning” in Machine Learning.

Update the values of X (punish) it when itis wrong.

X=X -—nV(X)

X: weights or biases

n: Learning Rate (typically 0.01 to 0.001)

Jw)

N The rate at which our network leams. This can change over time with
methods such as Adam, Adagrad etc. o (hyperparameter)

V(x): Gradient of X

We seek to update the weights and biases by a value indicating how “off”

they were from their target.

Gradients naturally have increasing slope, so we put a negative in front of

it to go downwards

Descending with step coefficient 0.005 (iteration 50)

20t

10t

fix) = o sin(3)

Start (2.53.7)

End (4.9-23.7),

-30
1

5 B 7

30

20¢

10t

-30
1

Inittal

weight ™\

/ Gradient

Global cost minimum
—— J (W)

Stanng
- Poim

toration 3

\' heraton &

Descending with step coefficient 0.05 (iteration 50)

f(x) = s sin(x)

Start (2.53.7)

End (5.4,22.1)

é B 7 818

"Non-deep" feedforward Deep neural network
neural network

hidden layer . hidden layer 1 hidden layer 2 hidden layer 3
input layer

input layer

output layer output layer

b & &
OO R X

19

HOW A DEEP NEURAL NETWORK SEES

“Audi A7”

Image source: “Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks" ICML 2009 & Comm. ACM 2024)
Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Ng.

SAMPLE IMAGES TO STUDY

BT
10 {2 o DA
Rl e [1000
20 {

5

R
q -
e

7
=k

--. 2‘.' : -Z ‘:
o A% e L
3 ’ - N v .
q_-i‘." ""::.L"' __l‘ Ll 5 & - 800
T c?.! -; .:.,. ! . fl""’*"' --:-. "“l':-..'
-r. i!‘ib. -8 - ™ i:--'. !
"l":"l.__"- P Sy 1 LR S 600

1;:‘_ ;-:- A | |00
= » Bi .

200

model

model.
model.
model.
-add(MaxPeoling2D (pool size=(2,2)))

model
model
model
model
model

model

model

model.
model.

model.
model.

model.

model.

model.

NEW ARCH.

= Sequential ()

add{Conv2D (10, kernel size=(2, 2), strides=(1, 1),input shape=input shape))
add (BatchNormalization ())
add (Activation ('relu'))

(

-add (ConvZDi(8; kermel size=(3, 3),strides—(1, 1}))
.add (BatchNormalization())

.add (Activation('relu'))

.add (MaxPooling2D (pool size=(2,2)))

-add(CenviD (8, kernel size=(1,1)))
model.

add (BatchNormalization())

.add (Activation('relu'))

addi(Dreopouii(025)")
add (Flatten())

add (Dense (8))
add (BatchNormalization())
add (Activation('relu'))

add (Dense (3, activation='softmax'))
compile (loss='categorical crossentropy',

optimizer="'adam', #Adam (lr=1e-3),
metrics=['accuracy'])

22

input_1: InputLayer /_(_> conv2d_4: Conv2D

A
A R ‘ H I | E ‘ | l | R E conv2d_1: Conv2D batch_normalization_4: BatchNormalization
A
batch_normalization_1: BatchNormalization activation_4: Activation
input img = Input(shape=(input shape)) # adapt this if using 'channels first
Y
x = Conv2D(86, (3, 3), padding='same') (input_ img) activation_l: Activation up_sampling2d_1: UpSampling2D
X = BatchNormalization() (x)
X = Activation('relu') (x) Y
X = MaxPooling2D((2, 2), padding='same') (x) i pooling2d:1: MixPooTing2D conv2d_5: Conv2D
X = Conv2D(64, (3, 3), padding='same') (x)
X = BatchNormalization() (x)
x = Rctivation('relu') (x) conv2d 2: Conv2D batch_normalization_5: BatchNormalization
X = MaxPooling2D((2, 2), padding='same') (x) -
X = Conv2D(32, (3, 3), padding='same') (x)
X = BatchNormalization() (x) y —)
X = Activation('relu') (x) batch_normalization_2: BatchNormalization activation_5: Activation
encoded = MaxPooling2D((2, 2), padding='same') (x)
A
at this point the representation is (4, 4, 8) i.e. 128-dimensional activation_2: Activation up_sampling2d_2: UpSampling2D
X = Conv2D(32, (3, 3), padding='same') (encoded) v
x = BatchNormalization() (x) max_pooling2d_2: MaxPooling2D conv2d_6: Conv2D
X = Activation('relu') (x)
x = UpSampling2D((2, 2)) (x) !
x = Conv12£ (64, . (3, 3), (§>E(td;iing= 'same') (x) comybil e Sl batch_normalization_6: BatchNormalization
X = BatchNormalization X e =
X = Activation('relu') (x)
X = UpSampling2D((2, 2)) (x) v — —
X = Conv2D(86, (3, 3), padding='same') (x) batch_normalization_3: BatchNormalization activation_6: Activation
X = BatchNormalization() (x)
x = Activation('relu') (x) A 4
x = UpSampling2D((2, 2)) (x) activation_3: Activation up_sampling2d_3: UpSampling2D
decoded = Conv2D(1l, (3, 3), activation='sigmoid', padding='same') (x)
v T

autoenceder = Model (input_img, deccded)
autoencoder.compile (optimizer='adadelta', loss='mse')

max_pooling2d_3: MaxPooling2D conv2d_7: Conv2D

Auto-Encoder
ARCHITECTURE

Input Output
\\\\ ////
\ P s /
/ X ~ -~ / \

\ Code /

\ / \ / ¥ L \ / \ /

/ \ D < / \

\ / \ /

/ \ \ / / \

\ / / \ \ f
Y X N EDY) N
% / b \ \ /

/ \ 7\ r 5 / X
/ \ / \ / \

\ /N /- ~_ /N I
/ % / \ P A / LY /
N VA ~_ \[U/ !
/ it #° g \
[a& \\\\
_ J _ J
Y Y

Encoder Decoder

* The bottleneck structures

work using dimensionality
reduction.

*\We are interested in

seeing the features
that are learned at the
bottleneck stage of the
AE after a successful
reconstruction.

*\We can use the

reconstruction loss as a
discriminant

24

REMARKS

* Slight improvement in the performance overall
* This is still a toy model with very specific examples
* Has not been tested with actual data

* Shows potential but there is room for improvement

25

* With this project I've noticed

* There are many parameters to consider (architecture, nodes, optimizers)

* There is no rule that let's you know where to start or how to develop the correct
model

* Thereis a lot of trial and error.

* You have to spend more time building the model than tuning the parameters.

* There have been many other versions of the architectures shown.

* All show similar patterns for results

26

USED MODELS

For the models in the supervised approach:

* Lossis categorical cross entropy

For the more complex models

* Optimizer is Adam or other adaptive optimizers with
similar results

27

